首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
大气科学   34篇
地球物理   1篇
地质学   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1987年   2篇
排序方式: 共有36条查询结果,搜索用时 62 毫秒
31.
This paper provides an overview of some aspects of atmospheric boundary-layer dispersion processes over homogeneous and complex terrain. Special emphasis is placed on a discussion of the boundarylayer scaling regimes over homogeneous terrain and the characteristics of the dispersion processes associated with each of these regimes. The paper points out that vertical concentration profiles usually deviate substantially from a Gaussian distribution. The mean flow and turbulence over a low hill is dealt with, and in the inner layer the turbulence levels are increased due to the mean flow speed-up. In the outer layer the turbulence is modified by the rapid distortion effect. In a middle layer the turbulence is reduced due to the effect of a hill-induced streamline curvature. The paper concludes that the flow perturbations introduced by large-scale hills and valleys invalidate the use of simple approximations for describing atmospheric dispersion processes, and that it is necessary to utilize the full set of equations of motion.  相似文献   
32.
Summary The present study addresses recent achievements in better representation of the urban area structure in meteorology and dispersion parameterisations. The setup and main outcome of several recent dispersion experiments in urban areas and their use in model validation are discussed. The maximum concentrations generally are predicted within a factor of two by the best models. If the plume is released down in a closely-packed set of obstacles, it is necessary to account for initial spread. If the plume is released above the obstacles, there is less of an initial spread. For roof level releases (the BUBBLE Tracer Experiment) the horizontal spread of the plume corresponds to a Lagrangian time scale bigger than the value for ground sources. Turbulence measurements up to 3–5 times the building height are needed for direct use in dispersion calculations.  相似文献   
33.
In 1998–1999, a large-scale seismic array was deployed in Finland as a part of the EUROPROBE/SVEKALAPKO subproject, involving 14 European universities and research institutes. The objective of the project was to map the deep lithosphere structure and thickness beneath the Fennoscandian Shield by means of teleseismic events. In addition, about 580 local seismic events were registered during the data acquisition period. Among them, only eight local earthquakes were recorded, the rest being quarry blasts from mining sites in Russia, Finland, Estonia and Sweden. In this study, we present the analysis of the seismic wave field from the strongest local events registered by the majority of the stations of the SVEcofennian–KArelian–LAPland–KOla Transect (SVEKALAPKO) array with the aim of mapping the structure of the upper mantle beneath the array. For this purpose, we selected the events corresponding to a single source type and compared these recordings with those from wide-angle reflection and refraction experiments in the area to identify the regional phases. The record sections of selected events demonstrate strong reflections (PmP) from the Moho boundary. The refracted Pn phases can be seen as first arrivals at distances of about 200–400 km from the source. At offsets of about 400–800 km, phases reflected from inhomogeneities in the uppermost mantle (P1) and double reflections from the Moho boundary (PmPPmP) were recorded.Results from 2D forward ray trace modeling of reflected and refracted P-waves along four profile swathes from SVEKALAPKO stations demonstrate that the mantle reflections originate from two different groups of boundaries beneath the array: one group of phases arrive from subhorizontal and gently dipping reflectors below the Moho boundary at a depth of 70–90 km, while the other group are phases originating from a depth of 100 to 130 km. Based on the irregular character of the first group of reflections, their different spatial orientation and correlation with the Moho offsets, we interpret the boundaries of this group as relicts of ancient subduction and collision processes. The second group of reflections can be explained by a transition from mechanically strong to mechanically weak lithosphere.  相似文献   
34.
The ability to simulate atmospheric dispersion with models developed for applied use under stable atmospheric stability conditions is discussed. The paper is based on model simulations of three experimental data sets reported in the literature. The Hanford data set covered weakly stable conditions, the Prairie Grass experiments covered both weakly stable and very stable atmospheric conditions, and the Lillestrøm experiment was carried out during very stable conditions. Simulations of these experiments reported in the literature for eight different models are discussed. Applied models based on the Gaussian plume model concept with the spread parameters described in terms of the Pasquill stability classification or Monin–Obukhov similarity relationships are used. Other model types are Lagrangian particle models which also are parameterized in terms of Monin–Obukhov similarity relationships. The applied models describe adequately the dispersion process in a weakly stable atmosphere, but fail during very stable atmospheric conditions. This suggests that Monin–Obukhov similarity theory is an adequate tool for the parameterization of the input parameters to atmospheric dispersion models during weakly stable conditions, but that more detailed parameterisations including other physical processes than those covered by the Monin–Obukhov theory should be developed for the very stable atmosphere.  相似文献   
35.
36.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号